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Abstract

The Booster Ionization Profile Monitor (IPM) obtains transverse beam profiles by measuring

the distribution of ions resulting from interaction of the proton beam with background gas in the

beam chamber. The challenge of the IPM operation is that the measured ion distribution is not

an exact representation of the beam distribution, since the ion trajectories are influenced by the

electromagnetic field of the beam. We have developed a new model for the dependence of the

IPM measurement on the beam parameters, assuming a Gaussian beam distribution. Our model

of the ion dynamics in the detector was constrained by making independent measurements of the

horizontal beam width at injection and extraction, and comparing these to data taken from the

IPM at the same time. Our calibration results in the formula

σmeasured = σreal + C1Nσp1

real,

where N is the number of protons in the machine, in units of 1012, C1 = (1.13 ± 0.06) × 10−5,

in units of (meters)1−p1/1012, and p1 = −0.615 ± 0.013; the subscript “measured” indicates the

raw IPM measurement, the subscript “real” the true beam width. This result is the first detailed

calibration of the response of the Booster IPM based on experimental data.

PACS numbers:
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I. INTRODUCTION

The Fermilab Booster is a rapid cycling, 15 Hz, alternating-gradient synchrotron with

radius of 75.47 m, that accelerates protons from 400 MeV kinetic energy to 8 GeV[1]. Multi-

turn H− injection is used; the pulse duration of the injected Linac beam is typically ten

Booster turns. In other words, the Linac beam fills the Booster ring circumference ten times.

During injection, a set of pulsed magnets (ORBUMP) produce a local orbit distortion used

to superimpose the trajectories of the already circulating beam and the incoming injected

beam. The stripping foil is located at the peak deflection of this orbit bump.

The Booster Ionization Profile Monitor (IPM) is the only device in the Booster capable

of measuring beam profiles with a time resolution of a single turn (2.2 micro seconds at

injection) at all times in the cycle. The IPM measures profiles using ions produced by the

interaction of the beam with the imperfect vacuum of the machine. An applied transverse

clearing field of 8 kV causes the ions to drift to a micro-channel plate (MCP). The beam

direction defines the longitudinal coordinate. The detector is 0.5 m long, with a transverse

gap of 12 cm. The MCP plate is 8 × 10 cm2 and has strip spacing 1.5 mm [2, 3]. The

response of the IPM depends on the charge of the beam, and so must be calibrated as a

function of the injected number of protons.

To calibrate the IPM response, we compared the beam profiles obtained with the IPM

against independent beam profile measurements. These measurements were obtained at

injection, using a single wire, and at extraction, using a multiwire proportional chamber

in the extraction line MI-8. In order to obtain few-turn resolution during the injection

measurements, we utilized a new technique where the beam width is measured using a

stationary wire at the location of the injection bump. The beam traverses this wire as the

ORBUMP field decays at the end of the Linac beam pulse.

II. THEORETICAL CALCULATION

Our objective is to measure the projection of the beam distribution on each one of the

transverse coordinates. For an ideal measurement of one projection, the ions’ drift should

be parallel to the other (non-measured) coordinate. For this purpose, the IPM provides an

external field which is applied to the beam along the non-measured coordinate. On the other
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FIG. 1: Simulated ion trajectories in the IPM. Ions are created by the beam (traveling in the +z

direction) in the center, then drift toward the MCP. The upper diagram is the idealized case where

the field due to the beam is negligible. The lower diagram shows the distortion of the trajectories

for realistic beam parameters.

hand, the field due to the beam itself is radial, so it affects the motion of the ions in both

planes, distorting the ion profile from an ideal match to the beam profile. Figure 1 displays

sample trajectories of ions in the IPM with and without the presence of the beam-induced

field. The simulation used to calculate the trajectories is described in Section III. We now

calculate the distortion created by the beam’s self-field.

We start by considering the scattering of particles of a beam with a Gaussian transverse
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profile caused by the field generated by the beam itself as well as an applied electric field.

The total force felt by an ion in the combined field is

~F = r̂
a

r

(

1 − exp(−r2/2σ2)
)

+ bx̂, (1)

where r̂ and x̂ are unit vectors in the radial and x directions, respectively. Here σ is the

total transverse RMS width of the beam distribution. The coefficient a is proportional to

N , the number of protons in the Booster, which we will typically measure in units of 1012.

The external field is perpendicular to the coordinate in which we are measuring the beam

profile. The longitudinal coordinate (z) is the beam direction. We ignore the curvature of

the beam in the longitudinal direction since the size of the detector is small compared to the

circumference of the ring. This calculation assumes a DC beam. The actual Booster beam

is effectively DC near injection then it is bunched during the cycle. The applied field in the

IPM is small enough that an ion sees several bunches before it has traveled one σ of the beam

distribution and tens of bunches before it reaches the readout. A DC beam is therefore a

reasonable approximation throughout the Booster cycle. A discussion of the effects of beam

bunching versus the IPM’s applied electric field can be found in Reference [4].

It is instructive to compare the relative magnitudes of the applied field and the field due

to the beam. A typical beam at extraction might have σ = 2.0 mm and N = 2.5 × 1012.

Then

a
rmax

(1 − exp(−r2
max/2σ2))

b
'

1

24
, (2)

where rmax is the distance from the center of the beam at which the field due to the beam

is maximum. The small value of this ratio suggests that it makes sense to start by ignoring

the field due to the beam, then reintroduce it as a perturbation.

It is possible to analytically calculate the average absolute deflection in the y coordinate

due to the scattering by the above force to leading order in the small parameter a, or,

equivalently, the current N . The result is

〈|yout|〉 = 〈|yin|〉 + KNσ
−1/2

real , (3)

where yin is the initial y-coordinate of the ion and yout is the y-coordinate of its arrival at

the MCP. In the absence of beam self-field effects, the above equation reduces to yin = yout,
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i.e., there is no distortion in the profile measurement.

The constant K is a complicated integral involving the forces and distributions in the

problem, but independent of the parameters σreal and N . We assert without proof that the

scaling behavior above is insensitive to the detailed shape of the beam distribution. Different

beam shapes can only modify the size of K. The value of K also depends on the details of

the IPM such as the distribution of ions, distance to the wall, etc. We will include details

and a calculation of the variance of y in a full paper.

III. SIMULATIONS AND PHENOMENOLOGY

We have written a two-dimensional simulation of the physics of the preceding section

using Octave[5]. In the simulation we distribute particles in the x − y plane according to

an x/y-symmetric Gaussian distribution of width σreal. We then calculate the individual

particle trajectories using the force given in Equation (1). Finally, we calculate the y-

location of the intercept of each particle trajectory with the MCP and form a histogram of

the intercepts. Figure 1 shows some typical trajectories obtained from our simulation. In

the actual Booster IPM, the width of the distribution is determined from a fit to a Gaussian

plus a linear background. We followed the same procedure in the simulation, even though

the background in the input distribution is zero in order to best match the fitting procedure

used in the actual IPM. The resulting fitted width, σsmeared, is our estimate of the σmeasured

observed in the actual IPM.

The parameters of the simulation include the geometry of the IPM, the strength of the

clearing field, and the beam width and current. These parameters are all well determined. In

order to understand the time resolution of the detector, one additional parameter is needed:

the mass of the ions themselves. However, the spatial smearing due to the beam charge

is independent of the ion mass [4]. In our simulation, we take the mass to be the mass of

a water molecule. A distribution of ions of different species is present in the actual beam

pipe [6].

Our simulation is similar to the simulation described in W. Graves’s thesis[3], the first

use of the Booster IPM for emittance measurements. Since the computer power available to

us now is substantially greater than what was available for Graves’s original work, we have

been able to extended our simulations of a larger range of parameter space and to work to
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higher accuracy. In Figure 2 we show the results of our simulation, as well as the results

of Graves’s earlier work. Our new simulation closely matches the original simulation in the

region of overlap.

In reference [3], the following formula is used to parameterize the results of simulations

σreal = C̃1 + C̃2σmeasured + C̃3N. (4)

This formula is currently implemented in the Booster IPM data collection system [2]

to estimate the real beam width from the measured distribution. The simplest physical

observation we can make about the scaling of measured versus real beam widths is that

σmeasured → σreal as N → 0. (5)

Unfortunately, the simple parameterization above does not have this property. Inspired

by the theoretical result of the previous section, we try the parameterization

σmeasured = σreal + C1Nσp1

real, (6)

which we refer to as the linear (in N) parameterization. Postulating the form of the next

term in the expansion, we also consider the quadratic form

σmeasured = σreal + C1Nσp1

real + C2N
2σp2

real. (7)

Validating the linear and quadratic parameterizations is complicated by the fact that

there are two independent variables, σreal and N . We tested these parameterizations by

performing two stages of fitting to the results of the simulation. First, we fit a parabola to

the quantity σmeasured − σreal, where σmeasured is the smeared σ predicted by the simulation,

for each fixed σreal using N as the independent variable. Next, we plot the coefficients of

the parabolic fit as a function of σreal. If the linear and quadratic parameterizations describe

the simulation well, the coefficients of the first parabolic fits should be described by power

laws. The plots of the coefficients, along with power-law fits, are shown in Figure 3. The

fitted parameters are shown in Table I. Returning to Figure 2, we see that the power-law

fit with the linear term alone is sufficient for most of the parameter space we explored. It

is only in region where σreal becomes small and N becomes large that the quadratic term

in the power-law fit becomes important. Even with the quadratic term, beam sizes around
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FIG. 2: Simulations and parameterizations. The crosses are the results of our Octave simulation,

including error bars. The circles are the results of the simulation in Graves’s thesis, for which no

error bars are available. The smeared width is the width that would be observed in the IPM under

the assumptions of our model, and it is plotted versus the beam current, in units of 1012 protons

per turn. Each one of the plots corresponds to a different initial value of σreal, the value which

corresponds to zero current. The linear and quadratic forms used to parameterize the response of

the IPM are described in the text, as is the Graves parameterization.
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FIG. 3: Power-law fits to parabolic coefficients as described in the text. The smallest value of σreal

was left out of the quadratic term fit to avoid contamination from higher-order terms in the series.

1 mm are not well described by our parameterizations, linear or quadratic. However, beams

as small as 1 mm are never observed in the Booster under normal operating conditions.

The extracted value p1 = −0.615 ± 0.013 is similar to, but not exactly the same as,
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Parameter Fitted Value Uncertainty Units

C1 8.44 × 10−6 0.61 × 10−6 m1−p1/1012

p1 −0.615 0.013 none

C2 1.8 × 10−14 1.3 × 10−14 m1−p2/1024

p2 −3.45 0.12 none

TABLE I: Results from fits to our simulation for linear and quadratic parameterizations.

the value −1
2

obtained in the calculation of Section II. In the calculation we estimated the

overall linear spread in the measured y, 〈|yout|〉. In the simulation, however, we extracted

widths by fitting to a Gaussian with a linear background, as described above. We expect

the behavior of 〈|yout|〉 to be similar to, but not exactly the same as the width obtained from

the fitting procedure. The small difference in the powers is therefore not unexpected.

IV. MEASUREMENTS

In order to obtain an experimental measure of the IPM calibration, we took width mea-

surements simultaneously with the Booster IPM, the MI-8 extraction line wire chamber and

the so-called “Flying Beam” wire. The “Flying Beam” wire is a single wire measuring device

located in the Booster injection area at straight section Long 1, which can be positioned

just outside the beam envelope of the injected beam, i.e beam envelope with the ORBUMP

magnets on. At injection, the ORBUMP magnets keep the beam trajectory displaced by ∼4

cm with respect to the nominal beam orbit, so that the injected H- ions will pass through

a stripping foil. The wire is placed between the displaced and nominal orbits. As the

ORBUMP current decays, the beam sweeps through the wire, providing a measure of the

horizontal beam profile. The time resolution of the wire measurements is determined by

the duration of the ORBUMP current decay, which is roughly five turns. By recording the

ORBUMP current as a function of time, I(t), and the response of the wire as a function

of time, a(t), we can reconstruct the horizontal profile, a(x), as measured by the wire by

using the known beam position as a function of current, x(I). See Figure 4 for a display of

a typical beam profile as measured by the “Flying Beam” wire.

The turn number for which we extract the profile is controlled by the timing of the
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FIG. 4: Typical horizontal beam profile measured with the“Flying Beam” wire.

injected beam relative to the ORBUMP current pulse; injecting beam closer to the falling

edge of the magnet pulse gives an earlier turn number. The range of turns for which we

can extract beam profiles with this technique is thus limited by the length of the ORBUMP

pulse, which amounts to roughly 30 turns. There is a drawback in this method: we can only

measure one profile during a given Booster cycle. If we want to measure widths of different

turn numbers, we are only able to do so during different Booster cycles. Also, since the

ORBUMP affects only the horizontal plane, we can only directly calibrate the horizontal

IPM detector. The vertical detector can be calibrated by temporarily rotating it to the

horizontal plane.

After injection into the booster, the transverse size of the beam decreases during accel-

eration. Since the “Flying Beam” wire measures beam widths during the first few turns

and the MI-8 chamber measures the beam width after extraction, we were able to see the

extremes of the range of beam sizes available. We varied the beam intensity between 1 and

13 injected turns in order to explore a wide variety of intensities as well. For the analysis

presented here we used data sets collected on November 11, 2002 and December 10, 2002.
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FIG. 5: IPM measured horizontal beam profiles for a beam charge of one (red), five (cyan), and

eleven (blue) injected turns in the machine. The corresponding lines are a fit to the data using a

Gaussian plus a first degree polynomial function.

In order to directly compare data from different locations in the Booster, the widths ob-

tained from the wire-based detectors were scaled according to the values of their β-functions

relative to the β-function at the IPM location. The scaling for the wire is, σwire@IPM =
√

βIPM/βwire×σwire ≈ 0.93×σwire, where βIPM = 5.73 m and βwire = 6.63 m at injection [7].

The scaling for the chamber is, σcham@IPM =
√

βIPM/βchamber × σchamber ≈ 0.82 × σchamber,

where βchamber = 17.97 m at extraction [8]. The raw data are summarized in Tables II and

III. Also, since the time resolution of the “Flying Beam wire” is roughly five turns, we

average the IPM measured beam profiles from five consecutive turns to compare with the

wire. An example of horizontal beam profiles as measured by the IPM for three different

beam intensities are shown in Figure 5.

In comparing our experimental results with the simulations, we found that all of the data

fell in the regime in which the linear and quadratic power-law fits were indistinguishable.

As a simple test of the power-law scaling seen in the simulation, we plot the quantity
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time wire width wire error IPM width IPM error Current [1012] No. IPM points

1384 3.7570 0.0072 6.406 0.118 5.030 15

1395 3.8778 0.0042 6.532 0.096 6.450 10

1371 3.2375 0.1064 4.288 0.106 0.981 43

1371 3.8882 0.0017 4.393 0.024 1.258 17

1418 3.8305 0.0035 5.053 0.099 2.085 17

1418 3.7846 0.0053 5.273 0.060 3.158 11

1400 3.8057 0.0015 4.868 0.046 3.295 11

1400 3.9399 0.0045 5.158 0.055 4.425 12

1380 4.0525 0.0012 5.445 0.103 3.439 7

1380 3.1100 0.0928 4.552 0.291 0.550 20

TABLE II: Wire (“Flying Beam”) data.

chamber width chamber error IPM width IPM error Current [1012] No. IPM points

3.300 0.050 4.906 0.100 4.200 35

2.045 0.081 2.604 0.047 0.800 43

2.168 0.041 2.995 0.065 1.562 17

2.250 0.041 3.327 0.039 2.341 11

2.370 0.041 3.744 0.035 3.135 12

2.618 0.041 4.276 0.037 4.053 7

TABLE III: MI-8 chamber data.

(σmeasured − σreal)/N as a function of σreal for all of the data and simulation points. We

take σreal to be the width obtained from the wire or chamber and σmeasured to be the raw

(uncorrected) width obtained from the IPM. The simulation points for a given value of σreal

will fall on top of each other only to the degree that the linear power-law fit is sufficient to

describe the simulation. Since we argued that the constant C1 depends on the details of the

beam and IPM, we let it float in order to find the best fit to the data. We did not vary the

parameter p1. The value of C1we get from the fit to the data, (1.13 ± 0.06)×10−5m1−p1/1012,

is approximately one third larger than the value we obtained from the simulation (see Table
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FIG. 6: Comparison of our linear parameterization with the data and simulation. The linear

parameterization predicts a linear relationship between the quantities plotted. The simulation has

been normalized to match the data.

I), which is reasonable given the simple assumptions present in the model. Figure 6 shows

the scaling behavior of the simulation is quite consistent with the data. Since we have not

identified all the sources of systematic errors in the wire measurements we estimate their

size from the scatter of the points of Table II and Table III. This results to a total error

which is approximately three times the size of the statistical error; the total error is shown

in Figure 6.

V. SUMMARY AND CONCLUSIONS

We have obtained a calibration for the FNAL Booster horizontal IPM detector, using a

new device, the “Flying Beam” wire, at injection, and a MWPC at extraction. The data

from these devices were compared to IPM measurements for different injected currents in

the machine, and the IPM response was fit to a function determined by a two-dimensional

electrodynamics model of the detector. We have found that the relation between the raw

beam width seen in the IPM and the real width is well described by the function

13



σmeasured = σreal + C1Nσp1

real, (8)

where N is the current in units of 1012 protons in the machine, C1 = (1.13 ± 0.06) ×

10−5m1−p1/1012, and p1 = −0.615 ± 0.013. The range of validity in (σreal, N), can be

extended by adding a term quadratic in N , but we do not find it necessary in order to

reproduce our data.

The importance of the calibration for the Booster IPM detector and the size of the

beam self-field induced effects is demonstrated in Figure 7, where both the calibrated and

uncalibrated IPM beam profiles are shown, together with the beam current, as a function

of time. The effect is most dramatic during the first eleven turns in the machine (injection

time), since the beam current is changing. The change of the uncalibrated beam width clearly

tracks the beam current change. The calibrated width shows a much smaller variation during

the injection period.
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