
Synergia: An Accelerator Modeling Tool with

3-D Space Charge

J. Amundson and P. Spentzouris

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

J. Qiang and R. Ryne

Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract

High precision modeling of space-charge effects, together with accurate treatment
of single-particle dynamics, is essential for designing future accelerators as well as
optimizing the performance of existing machines. We describe Synergia, a high-
fidelity parallel beam dynamics simulation package with fully three dimensional
space-charge capabilities and a higher order optics implementation. We describe
the computational techniques, the advanced human interface, and the parallel per-
formance obtained using large numbers of macroparticles. We also perform code
benchmarks comparing to semi-analytic results and other codes. Finally, we present
initial results on particle tune spread, beam halo creation, and emittance growth in
the Fermilab Booster accelerator.

Key words: accelerator physics, parallel computing, framework, space charge, halo
PACS: 29.27.Bd, 29.27.Fh

1 Introduction

In recent years, accurate modeling of beam dynamics in high-current low en-
ergy proton synchrotrons has become necessary because of new machines un-
der consideration for future applications, such as the High Energy Physics
neutrino program, and the need to optimize the performance of currently op-
erating machines, such as the Spallation Neutron Source and the Fermilab
Booster. These machines are characterized by high currents and require ex-
cellent control of beam losses, thus space-charge initiated halo formation is an
essential component of their modeling. In order to obtain accurate predictions

Preprint submitted to Journal of Computational Physics April xxx, 2005

for realistic conditions of operation, single-particle optics and self-consistent
multi-particle effects must be combined in a single simulation code.

Several computer simulations of space-charge effects in circular accelerators
using particle-in-cell techniques have been developed [1–3]. These simulations
have emphasized the transverse dynamics while using a less rigorous approach
for the longitudinal dynamics. Synergia [4] is a package for state-of-the-art
simulation of linear and circular accelerators with a fully three-dimensional
treatment of space charge, and the ability to use arbitrary order maps for the
single-particle optics modeling.

Synergia is designed to be a general-purpose framework with an interface that
is accessible to accelerator physicists who are not experts in simulation. Space-
charge calculations are computationally intensive, typically requiring the use
of parallel computers. The implementation of Synergia is fully parallel, includ-
ing the particle tracking and space-charge modules. The code itself is a hybrid
system based on previously developed accelerator physics codes. Synergia in-
cludes enhancements to these codes as well as new integration and interface
modules. There is at least one other example of an accelerator framework
which reuses existing codes [5]. Synergia distinguishes itself by being designed
to provide a high level framework specifically for studying 3D multi-particle
dynamics in a massively parallel computing environment.

Synergia was designed to be distributable to the particle accelerator commu-
nity. Since compiling hybrid code can be a complicated task which is further
complicated by the diverse set of existing parallel computing environments,
Synergia includes a build system that allows it to be compiled and run on
various platforms without requiring the user to modify the code and/or build
system.

In this paper we give a brief description of the components used in Synergia
as well as the details involved in combining them into a single framework. We
pay close attention to the build system, in keeping with the “distributable”
goal mentioned above. We also describe how we have taken advantage of the
Python scripting language [6] to give us a flexible human user interface with
very little effort. In addition, we present a few Synergia applications. First,
we compare with analytic calculations and predictions from other codes to
verify the accuracy of our implementation. Then, in order to demonstrate
the capabilities of the code in a realistic scenario, we present results from
simulations of the Fermilab Booster [7].

2

2 Components

The two packages at the core of Synergia are IMPACT [10] and the mxyzptlk/beamline
libraries [11]. We have added glue code and a human-interface wrapper to
these packages, together with necessary extensions of their modules, to form
the Synergia package.

2.1 IMPACT

Synergia uses IMPACT for its rf modeling and, most importantly, particle-
in-cell (PIC) implementation of space-charge. IMPACT contains a suite of
three-dimensional Poisson solvers that are invoked in the middle of each step
of a split-operator-based model. In this model, the Hamiltonian governing
single particle dynamics in an intense beam is written as

H = Hext +Hsc, (1)

where Hext is the Hamiltonian in the presence of externally applied fields only
(i.e. fields generated by beamline elements), and Hsc is the Hamiltonian which
describes the effects of the space-charge fields. The electromagnetic potential
associated with these fields is determined by ignoring the fine-grained texture
caused by the discrete nature of the particles and treating the collective fields
by a self-consistent average or mean field. We calculate the potential in the rest
frame of the beam particles, where for most accelerator problems the motion
of the particles with respect to each other is non-relativistic. In this case, the
effect of the electric and magnetic self-fields are both deduced from the scalar
potential, which is related to the beam density, ρ, by Poisson’s equation

52φ = −ρ/ε0 (2)

The Hsc term calculated with this procedure is simply proportional to the
scalar potential, with a proportionality constant that varies as 1

γ2 to account
for the azimuthal magnetic field associated with the longitudinal beam current.
Since the scalar potential depends only on coordinates and not momenta,
the effect of Hsc on a particle is a change in momentum, i.e. a space-charge
kick, which we denote by Msc, and it is calculated using PIC techniques, as
described in Ref. [10]. The effect ofHext is expressed using the transfer map for
the associated beamline element,Mext, which can be calculated very efficiently
to arbitrary order, using Lie algebraic techniques (in the current Synergia
implementation we only use up to second order maps, see Section 2.2). Given

3

Msc and Mext, we use a second order split-operator algorithm

M(h) =Mext(h/2)Msc(h)Mext(h/2) +O(h3), (3)

to propagate particles through a step in the independent variable. The above
formula is accurate through second order in the step size h in approximating
the effect of the full Hamiltonian, H, see Ref. [10]. The algorithm for the ar-
bitrary order case is discussed in Ref. [12]. The problem of calculating beam
propagation including space-charge effects therefore factorizes into the prob-
lem of calculating the two effects one at a time and combining them as above.
A key advantage of this splitting, as opposed to one that separates the Hamil-
tonian into pieces involving only coordinates and only momenta, is that in our
approach the rapid variation of the external fields is separated from the more
slowly varying space-charge fields. A simulation step involves transport of a
distribution of particles through half a step usingMext, solution of equation 2
using the new positions to determineMsc, application ofMsc which produces
an instantaneous change in particles momenta, and finally transport through
the remaining half step usingMext and the new momenta. The choice of step
size depends on the expected strength of the space charge effects, allowing for
performance optimization.

One subtle, but important, issue in the implementation of our algorithm is
the use of the arc length s as the independent variable instead of the time t.
This allows us to use the fully developed machinery of map-based methods for
beam dynamics calculations [13]. The solution of the Poisson equation requires
knowledge of the charge density at fixed time t, so during a simulation step
particle coordinates are transformed from a fixed s to a fixed t and back to
a fixed s representation. We implement this transformations using a ballistic
approximation: during the transformation it is assumed that the particles
move on predefined trajectories, namely straight lines with respect to the
reference trajectory. The transformation between the phase-space variables
(xin, px, y

in, py,∆t,∆E) and the fixed-time coordinates (x, y, z) is then given
by

x=xin +
px∆t

(∆E + Eref)/c2

y= yin +
py∆t

(∆E + Eref)/c2
(4)

z= zref +
∆t/c

(∆E + Eref)/c2

√

(E + Eref)2 −m2c4 − c2p2x − c2p2y,

4

where zref and Eref are the longitudinal position and energy of the reference
particle 1 , respectively. This version of the ballistic approximation neglects
any curvature effects in the case of a circular accelerator, so it is valid for
simulations of beam slices whose longitudinal extent is small compared to the
radius of the accelerator.

We have extended the original IMPACT in several ways. IMPACT now in-
cludes an injection module, allowing multi-turn injection modeling. We have
extended the beam generation module to include a six-dimensional Gaussian
distribution with general correlations. (See Section 3.2.4.) We have also im-
proved the memory management, allowing for an arbitrary number of beamline
elements. Finally, we have enhanced the IMPACT particle data structure to
allow following individual particles throughout the simulation and calculating
particle tunes.

2.2 mxyzptlk/beamline libraries

The mxyzptlk/beamline package is a set of C++ libraries covering a wide range
of accelerator physics computations. Even though the original code is over 10
years old, the libraries are written in a modern style, including real classes
with encapsulation and well-considered interfaces. The package includes ba-
sic toolkit, a set of useful utility classes such as Vector, Matrix, etc., beam-
line, classes for modeling elements of an accelerator beamline (the various
magnets, rf cavities and other elements that make up a particle accelera-
tor), mxyzptlk, classes for Lie algebraic accelerator physics calculations[13],
and physics toolkit, a set of classes for analysis and computation.

Synergia takes advantage of mxyzptlk/beamline’s arbitrary-order transfer maps,
which are calculated using Lie algebraic techniques. The current Synergia im-
plementation utilizes first- and second-order maps, but generalization to ar-
bitrary orders is planned for the near future. Another desirable feature of the
mxyzptlk/beamline package for our purposes is the ability to read accelerator
descriptions in the MAD8 language [14]. The MAD8 parser in beamline is lim-
ited to processing accelerator lattice descriptions since the Synergia interface
is much more flexible than the MAD8 command language. In a generic Syner-
gia run lattice elements from MAD8 files can be combined in arbitrary ways
and even mixed with native IMPACT/Synergia elements. Note that accelera-
tors are made of repetitive sequences of special magnet arrangements. Such a
repetitive sequence is called the lattice and the special magnet arrangement a
lattice unit or lattice cell.

1 The reference particle is a hypothetical particle following the design trajectory of
the accelerator.

5

Fig. 1. Synergia components and their relation to outside inputs.

3 Synergia

Synergia is the combination of IMPACT, the mxyzptlk/beamline libraries, glue
code to get the two packages talking to each other, and a user interface wrapper
providing a straightforward, yet powerful, human interface. Figure 1 shows the
relationship between Synergia components, MAD8 files, and analysis tools.

3.1 Build System

Portability has been a major design concern in creating Synergia. We rely on
multiple components written in multiple languages. While using multiple com-
ponents allows us to quickly put together a powerful package, it also creates a
configuration management problem. Multiple-language issues are particularly
problematic because calling conventions vary from platform to platform. We
solve the multiple language part of the problem by writing all of the inter-
language wrapper code in terms of macros that can be redefined for various
platforms. We solve configuration management problem by incorporating a
modern build system based on the GNU Autotools[15] package for portable
compilation to provide consistent builds on all platforms.

In principle, building Synergia is as simple as executing “./configure &&

make && make install” in the mxyzptlk directory followed by “./configure
&& make” in the Synergia directory. In practice, many options to configure are

6

available. The two principles we have followed in constructing the build system
are (1) modifying the source (including Makefiles) should never be necessary,
and (2) all options should come with reasonable defaults. To date, Syner-
gia builds without modifications on Linux systems using either the Portland
Group F90 compiler or the Intel F90 compiler, g++ or Intel CC, and either
the MPICH or LAM implementations of the Message Passing Interface (MPI).
Synergia also builds without modifications on AIX, using XL Fortran, Visual
Age C++ and POE.

3.2 Human Interface

The user-level interface to Synergia consists of a set of Python classes that
wrap the low-level interfaces to the code. The Python interface generates an
input file that is read by the simulation itself. The Python interpreter need
not be present at run time. The Python interface can even generate a job to
be automatically transferred and submitted to a remote machine where no
Python interpreter is available.

To creat a Synergia job, the user writes a short Python script utilizing these
classes. An example script excerpt is shown in Figure 2. The excerpt de-
scribes a FNAL Booster simulation which utilizes Synergia’s matching mod-
ule, the MAD parser, and demonstrates the use of simple Python syntax to
run for multiple turns. The use of Python has several advantages: There is
no application-specific syntax to learn. A user familiar with Python will be
able to understand the entire interface. A user unfamiliar with Python will be
able to copy an example script and modify it with little difficulty. Although
most examples will only use Python trivially, the full power of the language
is available should it be needed. Last, but not least, the use of an existing
scripting language greatly simplifies the implementation, minimizing both the
development time and the probability for introducing bugs.

3.2.1 Job Description

Every Synergia job is a simple Python script. Synergia provides the class
Impact_parameters as an interface to the internal parameters of IMPACT,
including input beam, energy, space-charge parameters, etc. The accelerator
lattice can be defined using elements from an external MAD8 file.

Synergia provides a basic matching module to generate matched beams, uti-
lizing linear optics calculations from mxyzptlk/beamline for lattice function
determination. We also provide an interface to our Octave utilities package
that generates a matched beam in the presence of space charge by solving the
r.m.s. envelope equations.

7

ip = impact_parameters.Impact_parameters()

ip.processors(4,16)

ip.space_charge_BC("trans finite, long periodic round")

ip.input_distribution("6d gaussian")

mad_file = "booster.mad"; mad_line = "booster"

(alpha_x, beta_x, alpha_y, beta_y) = \

madcalc.twiss_initial(mad_file,mad_line)

Set horizontal parameters based on beam width measurement

width_x = myopts.get_value("xwidth")

eps_x = width_x**2/beta_x

(width_xprime, r_x, emittance) = \

matching.match_twiss_width(width_x,alpha_x,beta_x)

ip.x_params(sigma = width_x, lam = width_xprime * pz)

Run for numturns turns; numturns is a command line parameter

numinjturns = 10

numturns = myopts.get_value("numturns")

x_offset= 0; y_offset= 0; phase_offset=0

for turn in range(0,numturns):

ip.add(impact_elements.External_element(

kicks=96, steps=10, radius=0.04,

mad_file_name=mad_file, beamline_name=mad_line))

if turn < numinjturns:

ip.add(impact_elements.Injection_element(2,ip.particles_val,

x_offset,y_offset,phase_offset))

my_synergia = synergia.Synergia(ip,sys.argv,synergia.options)

my_synergia.prepare_run(myopts.get_value("dirname"))

Fig. 2. Example excerpt of a Synergia Python script specifying a simulation with
multiple injection turns utilizing basic Python. The lattice description is take from
a MAD8 file; beam matching utilizes Synergia’s matching module.

3.2.2 Job Creation and Submission

Synergia jobs can be arbitrarily complex. Typically, the user will want to
run several different jobs varying only a few of the many input parameters.
Synergia provides several facilities to assist the user in creating, submitting
and managing simulation runs.

A Python module options provides a simple method to write scripts accepting
command-line arguments for Synergia and user-defined parameters. When a
Synergia job script is run, the command-line options for that job are auto-
matically recorded in a manner so that they can be edited and/or reinvoked.
Synergia also records all job parameters in a human-readable description file.

Synergia automatically generates batch system submission scripts based on
a user-supplied template. Several example templates are provided, including
templates for single-processor machines, multi-processor machines, the PBS

8

Fig. 3. OpenDX visualization of a three dimensional histogram of particle density
of a FNAL Booster simulation.

batch system and more. Optionally, jobs can be defined to run on remote
machines. Synergia generates scripts to export the input files to the remote
machine, submit the job, and retrieve the files from the remote machine once
the job is finished.

3.2.3 Diagnostics

A number of diagnostics are provided by default during the simulation run.
In addition, we provide tools to allow users to analyze simulated data after
a simulation has completed. The standard diagnostic utilities are evaluated
at each split-operator step and include calculations of the second, third and
fourth moments of all six degrees of freedom, two-, four-, and six-dimensional
emittances, and all pairwise correlations for beam components.

For post-processing, we provide the ability to dump the entire beam, or a
sampled subset of the beam, at any simulation step. Files can be dumped in
plain text or HDF5 format [16]. Each particle is saved along with a unique
tag so that individual particles can be tracked throughout the simulation. We
provide tools for rearranging a series of particle dumps into individual tracks,
both for diagnostic purposes and calculating particle tunes. The output format
of the particle information dumps can be easily interfaced to visualization
packages such as OpenDX [17]. An example of such visualization of a FNAL
Booster simulation is shown in Figure 3.

9

3.2.4 Distributions with general correlations

Synergia can generate Gaussian beams with arbitrary two-component cor-
relations. Generation of random distributions with finite statistics leads to
statistical errors in the moments of the generated distributions. We use, typi-
cally, O(106), macroparticles to simulate O(1012) real particles. The statistical
errors in the simulation are therefore an artifact of the simulation only. Even
a very small deviation in the correlation coefficients can make the difference
between a matched beam and a beam that displays measurable phase-space
oscillations. Some of the effects of space charge are very similar to the effects
of a mismatched beam. In order to distinguish small space-charge effects from
statistical fluctuations, it is advantageous to correct for the statistical fluctu-
ations before the simulation starts. There are other cases, such as parameter
scans, where running without space charge and a small number of macropar-
ticles, say O(103), where the statistical fluctations would be very important.
We correct for these errors at the level of two-component correlations in the
following procedure.

We want to generate a set of random vectors {r} such that

〈rj〉 = r̄j (5)

and

〈rjrk〉 = Cjk, (6)

where r̄j and Cjk are given. A typical application would be a beam with
no offset (r̄j = 0) and Cjk chosen to create a matched beam. We start by
generating a finite set of (nominally) uncorrelated random vectors {ρ}. These
vectors will have first and second moments

ρ̄j ≡ 〈ρj〉 (7)

and

Xjk ≡ 〈ρjρk〉. (8)

In the limit of infinite statistics, Xjk → δjk. Finite effects cause deviations
from this limit, which will introduce small, but unphysical, deviations from
the desired distribution. In order to correct for these effects, we use the trans-
formation

rj = Ajk(ρk − ρ̄k) + r̄j, (9)

10

Where

C = GGT , (10)

X = HHT , (11)

and

A = GH−1. (12)

The resulting set of vectors {r} will have the correct first and second moments,
with no error contribution due to finite statistics.

3.3 Multi-turn injection

Synergia provides an injection module to allow modeling of multi-turn injec-
tion in a completely transparent manner. In multi-turn injection, particles are
injected over a time period longer than it takes for the beam to travel around
the ring. Newly-injected particles have to be merged with the particles that
have already propogated one or more times around the machine. Synergia
models this process via an injection module that generates additional macro-
particles according to a given distribution. The total beam current represented
by these macro-particles is a parameter. An injection “element” can be placed
anywhere between beamline elements in a given lattice, thus multi-turn in-
jection can be simulated by simply including such an element in a loop. (See
Figure 2). In our implementation, both the number of macro-particles and the
beam current increase with any subsequent use of the injection module. To
allow for injection painting, the injection module includes in its argument list
vertical, horizontal, and longitudinal phase offsets for the center of the beam
distribution.

4 Parallel Performance

We have run benchmarks of our code on four different clusters under a variety
of configurations. Our benchmark is a simulation of a single revolution of the
FNAL Booster (see Section 5.) The simulation included 2.7 million particles
undergoing 100 space-charge kicks on a 65×65×65 grid.

Three of the clusters are Linux clusters: lqcd [23], heimdall [24] and Al-
varez [25]. Our benchmarks include a sampling of the range of currently-
available networking options for Linux: 100 Mbit Ethernet, Gigabit Ethernet

11

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512

pe
rf

or
m

an
ce

 [t
ur

ns
/h

ou
r]

number of cpu’s

lqcd (2.4 GHz Xeon, ifc, Myrinet)
seaborg (375 MHz POWER3, IBM SP)

heimdall (Athlon 1800, ifc, Gb)
heimdall (Athlon 1800, pgf90, Gb)

heimdall (Athlon 1800, pgf90, 100 Mbit)
alvarez (866 MHz PIII, pgf90, Myrinet)

Fig. 4. Performance, defined as simulated Booster turns per hour, versus the number
of processors used, on various parallel machines.

and Myrinet 2000. We also compared the performance of the Intel fortran
compiler (ifc) with the Portland Group fortran compiler (pgf90). For the for-
mer, the code was compiled with the optimization setting“-O2”. For the latter
the code was compiled with the setting “-fast”. The fourth cluster we used
for benchmarking was Seaborg [26], the 6,080-processor IBM SP at NERSC.

The propagation of particles by applying external maps is trivially paralleliz-
able; the particles are independent of each other. In the space charge calcula-
tion, however, each particle feels the effect of every other particle. Some global
communication between processors in a parallel calculation scheme is there-
fore required. The scaling behavior of a parallel space charge calculation must
eventually be limited by networking performance.

The results of our benchmarks are displayed in Figure 4. Overall, we find that
Synergia scales very well up to a certain number of processors determined by
the problem size and networking used in each case. The clear winner in scaling
is the specialized configuration found in Seaborg. The fastest Linux clusters,
however, showed overall superior performance. We can also see that Gigabit or
Myrinet is necessary for a Linux cluster to effectively take advantage of more
than a few processors. These tests were insufficient to distinguish between
Gigabit and Myrinet.

12

5 Synergia Tests and Applications

In order to verify the accuracy of our simulation we model several cases simple
enough to perform comparisons with semi-analytic calculations. We start by
comparing the evolution of a K-V beam distribution in an idealized FODO
channel with the Synergia prediction. A K-V distribution is a beam distribu-
tion in the four-dimensional transverse phase-space which lies on a δ function
shell. Its projections onto any transverse plane are uniform elliptical distribu-
tions with sharp boundaries [28]. A FODO channel is a periodic focusing struc-
ture composed of a sequence of focusing (F) and defocusing (D) quadrupoles
separated by nonfocusing elements (O), such as a drift space. Then, we com-
pare the Synergia prediction for the evolution of the second moments of a
Gaussian beam distribution in a FODO channel to the solution of the enve-
lope equations 13, 13. We also compare FODO channel results from Synergia
with another space-charge code. Finally, we compare the tune shifts predicted
by Synergia to that of the Laslett tune shift formula [20].

The first realistic application of Synergia has been to model the FNAL Booster [7]
during the first few hundred turns after injection. First, we study the incoher-
ent tune shifts for different beam currents. Then, we study patterns of halo
formation quantitatively, as well as qualitatively. Finally we examine emit-
tance growth in various beam configurations.

5.1 Synergia Benchmarking

For a K-V distribution the charge density across the beam is constant and the
forces associated with space charge vary linearly with the coordinates x and y.
The evolution of the beam envelope can be calculated exactly by integrating
the envelope equations [28]. As a first check, we compare the evolution of a
K-V beam as predicted by Synergia to the solution of the envelope equations:

σ′′x +Kxσx −
ε2rms
σ2x

=
ξ

4(σx + σy)
(13)

and

σ′′y +Kyσy −
ε2rms
σ2y

=
ξ

4(σx + σy)
, (14)

where ξ = 4Q2r0λ/(Aβ
2γ3), with Q the charge of a beam particle in units of

e, r0 is the classical proton radius, λ is the line charge density, A is the atomic
number, Kx/y are the focusing strengths, σx = 〈x2〉1/2, σy = 〈y2〉1/2, and

13

εrms is the unnormalized r.m.s. emittance (a discussion on different emittance
definitions and beam phase space can be found in Ref. [30]):

εrms = 〈x
2〉〈x′2〉 − 〈xx′〉2 =

〈x2〉

βTwiss
. (15)

Note that the r.m.s. value of x in a K-V beam of radius a is given by 〈x2〉 =
a2/4.

In Figure 5 we compare the numerical solution of Equations 13 and 14 to the
Synergia result for the FODO channel defined by the following MAD8 [14]
file:

drs: drift, l=7.44d-2

drl: drift, l=14.88d-2

qd7: quadrupole, l=6.10d-2, k1=-103.11d0

qf7: quadrupole, l=6.10d-2, k1= 103.11d0

channel: line=(drs, qd7, drl, qf7, drs)

The file describes a channel consisting of an empty tube, i.e., drift, (drs) fol-
lowed by a quadrupole magnet (qd7), another drift (drl), another quadrupole
(qf7) and a copy of the initial drift (drs). The lengths in meters are given by
the l parameter. The parameter k1 describes the magnetic field gradient in
units of meters−2 according to

k1 =
1

(Bρ)

∂By

∂x
, (16)

where Bρ is the ratio of the particle momentum to its charge.

For this comparison we used a K-V beam with a kinetic energy 0.0067 GeV
and two dimensional transverse emittance 3.1× 10−6 m rad in both the hori-
zontal and vertical planes. Figure 5.a shows the comparison of the calculated
horizontal beam width for a matched beam of 0.5 Amps. Figure 5.b shows the
effects of taking into account space charge in the matching procedure in the
evolution of the horizontal beam width. The Synergia prediction is consistent
with the numerical solution of the envelope equations. The differences between
the curves in Figure 5.b are a measure of the magnitude of the space-charge
effect.

In the case of a more realistic beam distribution, such as a Gaussian distribu-
tion, the envelope equations can model the evolution of the second moments
of the beam distribution under the assumption that the emittance evolution is
known [28]. In the cases presented here we assume that the emittance remains
constant. We compare the prediction of Synergia with the prediction of the

14

0.0008

0.0009

0.001

0.0011

0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ho
riz

on
ta

l w
id

th
 [m

]

longitudinal position [m]

envelope equation
synergia

0.0007

0.0008

0.0009

0.001

0.0011

0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ho
riz

on
ta

l w
id

th
 [m

]

longitudinal position [m]

current = 0 A
current = 0.5 A, matched for current = 0 A

current = 0.5 A, matched

(a) (b)

Fig. 5. (a) Comparison of the Synergia prediction for the evolution of an 0.5 A beam
in the FODO lattice described in the text to the solution of the envelope equations.
(b) Effect of including space charge in the matching condition, as calculated using
Synergia.

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0 2 4 6 8 10 12 14 16 18 20

ho
riz

on
ta

l w
id

th
 [m

]

longitudinal position [m]

envelope equation
synergia

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0 5 10 15 20

ho
riz

on
ta

l w
id

th
 [m

]

longitudinal position [m]

current = 0 A
current = 0.42 A, matched for current = 0 A

current = 0.42 A, matched

 0.0044

 0.0043

 20 19 18

(a) (b)

Fig. 6. (a) Comparison of the beam width evolution in a FNAL Booster cell as
predicted by Synergia and the solution of the envelope equations. (b) Effects of
space charge on matching, as calculated using Synergia. The insert shows the detail
of these effects at the end of the cell.

envelope equations for the evolution of the width of a Gaussian beam in a
lattice cell of the FNAL Booster [7]. Here we use a beam that is Gaussian
in the transverse coordinates and uniform in the longitudinal coordinate. The
results are shown in Figure 6.a. In Figure 6.b we show the effects of including
space charge in the matching condition, as predicted by Synergia. The current
used in this simulation is a typical operating current for the machine. In this
case the space-charge effect is small for the r.m.s. width change in one Booster
cell. Traversing a single cell is a tiny fraction of the entire cycle in which the
beam passes through 480,000 cells.

It is also important to cross-check the results from Synergia with other space
charge simulations. A benchmarking exercise comparing several codes, includ-
ing Synergia, appears in Ref. [8]. As a simpler test, we include a consistency
test comparing Synergia with the MaryLie/IMPACT (ML/I) code [9]. The

15

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ho
riz

on
ta

l b
ea

m
 r

.m
.s

 [m
]

s [m]

MLImpact
Synergia

Fig. 7. Comparison of the Synergia and MaryLie/IMPACT predictions for the hor-
izontal r.m.s. beam size of a K-V beam propagating in the FODO channel (case 1)
described in the text as a function of s.

comparison is done for two cases:

(1) the FODO channel described above, using a 0.5 A matched K-V beam
with two-dimensional transverse emittance of 1.0 × 10−6 m rad in both
planes.

(2) a 0.1 A cold proton beam in a FODO channel with rf cavities.

For each of these comparisons we used a common input file of beam parti-
cles for both the Synergia and ML/I simulations. In Figure 7 we show the
comparison of the horizontal r.m.s. beam size predictions from the two codes
for case 1. The agreement is very good. The difference between the predic-
tion of the two simulations for the r.m.s. width of the beam at the end of
the channel is 0.27%. This slight variation in the final answer is due to minor
differences in the implementation of the Poisson solver and differences in the
problem description in the simulation, such as the number of slices used in
the split-operator particle advance algorithm.

In figure 8 we show the results for case 2. The agreement between the two
codes is excellent. In this case, we model a cold, uniform density, 100 mA
proton beam, with kinetic energy of 250 MeV, in a FODO channel with rf
cavities. The channel consists of two 0.15 m focusing quadrupoles (fquad),
with a gradient of 6 T/m, a 0.30 m defocusing quadrupole (dquad), with -6
T/m gradient, four 0.10 m drifts (dr), and two 1 m rf cavities (cav), with fre-
quency 700 MHz. The rf cavities are treated by computing the linear transfer
maps, including the effects of acceleration, and using numerical integration
of the map coefficients. This requires a knowledge of the on-axis electric field

16

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0 0.5 1 1.5 2 2.5 3

x r
m

s,
 y

rm
s,

 0
.4

*z
rm

s
[m

]

s [m]

xrms

zrms

yrms

Synergia
ML/I

Fig. 8. Comparison of the Synergia and MaryLie/IMPACT predictions for the r.m.s.
beam envelopes of a cold beam propagating in the FODO channel with rf cavities
(case 2) described in the text.

and its derivative. For this example, the functional form of the field is given
by E(z) = E0 cos(ωt + φ). The beamline is arranged in the following way:
(fquad dr cav dr dquad dr cav dr fquad). The cavity phases have been set
so that the first cavity accelerates the beam and the second decelerates it
by the same amount. Since the beam is cold, the rms equations describe the
problem exactly, as long as the beam remains cold and uniform, so there is a
matched condition where the final envelopes are identical to the initial values.
We obtained the matched solution by solving the envelope equations in three
dimensions [29]. The Synergia toolkit includes envelope equation solvers used
to find matched beam parameters. We generated a numerical realization of the
matched uniform distribution consisting of 100,000 particles. These particles
were used as the input of both Synergia and ML/I.

The comparison between the Synergia and ML/I codes demonstrates that
both implementations are consistent, and, most importantly, that they are in
excellent agreement with the theoretical expectations for the test cases shown.
In addition, the small differences in the obtained results demonstrate the level
of uncertainty due to different choices of solvers and their parameters.

Another simple comparison we can make with analytic calculations is to com-
pare the Laslett tune shift for a K-V beam with results from a Synergia sim-
ulation. We use the formula [20]

∆ν =
−Nr0

8πβ2γ3εrms
, (17)

17

 6.45

 6.5

 6.55

 6.6

 6.65

 6.7

 6.75

 6.8

 6.85

 6.9

 6.95

 0 0.2 0.4 0.6 0.8 1

tu
ne

beam current (Amps)

Synergia prediction, horizontal
Laslett formula, horizontal

Synergia prediction, vertical
Laslett formula, vertical

Fig. 9. Comparison of the horizontal and vertical tune shifts calculated using Syn-
ergia and using equation 17.

whereN is the number of particles in the beam, r0 is the classical proton radius
and εrms is the unnormalized r.m.s. emittance as defined in Equation 15. The
Synergia prediction for the tune shift is obtained by taking the peak of the
Fourier transform of the horizontal and vertical position of individual particles,
as a function of s, sampled each cell (24 times per turn) for 100 turns. Here
s is the coordinate along the path of the reference (or design) trajectory. By
sampling each cell, we are able to extract the integer portion of the tune.
Sampling once per turn is sufficient to extract the fractional tune. In Figure 9
we show the comparison between the results from Equation 17 and Synergia
for the FNAL Booster (“bare” lattice, as described above) and for different
beam currents. The agreement is very good; we thus conclude that Synergia
can reliably reproduce analytical calculations of space-charge effects.

5.2 Application to the FNAL Booster

In this section we present initial results from Synergia studies of beam behavior
in the FNAL Booster during the first few hundred turns after injection.

The Booster accelerator [7] is the first circular accelerator in FNAL’s acceler-
ator chain. It is a synchrotron, i.e the field of its magnets changes with time,
as the beam gets accelerated, in order to keep the beam radius constant. The
Booster accelerates protons from a kinetic energy of 400 MeV to 8 GeV. It
is a rapid-cycling machine, ramping the field of its magnets at 15 Hz. The
Booster radius is 75.47 meters and its lattice consists of 24 lattice units or
cells. The main components of each cell are four combined function magnets,

18

i.e magnets which combine both quadrupole fields (for focusing) and dipole
fields (for bending). The beam is accelerated by seventeen radio-frequency
(rf) cavities, with frequency that slews from 37.7 MHz at injection to 52.8
MHz at extraction. The nominal average current immediately after injection
is ∼ 420 mA. Typically, the injection process lasts for ten Booster turns. The
beam is injected from the FNAL linear accelerator, the linac [18], and it is a
stream of bunches equally spaced at the linac [18] RF frequency of 201.2 MHz.

There are many factors affecting the behavior of the Booster beam, including
the energy spread and emittance of the injected beam, nonlinear field errors
and space-charge effects. The space-charge effects have long been believed to be
responsible for a significant fraction of the observed losses in the Booster [19]
during the first 2 ms of the cycle (the injection, capture, and bunching phases).
In this section we present a rudimentary study of these effects in an idealized
Booster; we will examine these effects in greater detail in a subsequent paper.
For all of the calculations in this paper we have used an idealized “bare”
Booster lattice without any non-linear elements. We defer the inclusion of
effects such as magnet offsets, correctors, etc., to a future study.

As our first example, we consider the transverse tune spread due to space
charge, using a Booster lattice without nonlinear beamline elements and with-
out the complications of multi-turn injection, but with realistic input beam
parameters. The initial beam used in the simulation is a 6-dimensional Gaus-
sian distribution, with the appropriate correlations to match it to the Booster
lattice, accounting for space-charge effects. The horizontal and vertical r.m.s.
emittance was 3.05×10−6 m rad. The full current was injected in a single turn.
The single-particle optics calculations used transfer maps including both linear
and quadratic terms (second-order maps). The momentum spread, ∆p/p, was
0.0003. We used 96 space-charge kicks per turn, calculated on a 33× 33× 257
computational grid with an average of four particles per grid cell. We fol-
lowed the beam for 100 turns after injection, recording particle information
once per space-charge kick. In this comparison, we used currents of 0, 0.105,
0.210, 0.420, 0.630 and 0.840 Amps. As stated previously, the nominal Booster
current is 0.420 Amps.

We compare the Synergia results with the results from the Laslett tune shift
formula [20] for a Gaussian beam,

∆ν =
−Nr0

4πβ2γ3εrms
. (18)

Note that the above tune shift for a Gaussian beam is a factor of two larger
than the tune shift for a K-V beam in Equation 17.

Tune shift distributions are frequently presented as scatter plots in two-dimensional

19

transverse tune space. However, a scatter plot only gives a very qualitative pic-
ture of the distribution; the apparent shape is determined by the statistical
outliers, while the internal density in the center is obscured by overlapping
points. We propose the generalized two-dimensional r.m.s. ellipse as a quanti-
tative measure of the spread of tune shifts in the two-dimensional transverse
tune space. The ellipse is given by taking the covariance matrix

C =







〈x2〉 − 〈x〉2 〈xy〉 − 〈x〉〈y〉

〈xy〉 − 〈x〉〈y〉 〈y2〉 − 〈y〉2





 , (19)

decomposing into

C = RRT , (20)

where R is lower diagonal. The ellipse is then parameterized by







x

y





 = R







sin θ

cos θ





 +







〈x〉

〈y〉





 . (21)

For the case of tune spreads, we take x to be the horizontal tune and y to be the
vertical tune. The resulting r.m.s ellipse is a model-independent, statistically
robust representation of the spread of the majority of the particle tunes.

The results for the different beam currents are summarized in Figure 10, which
shows the transverse tune spread together with the corresponding generalized
two-dimensional r.m.s. ellipses. The filled squares in the figure correspond to
the prediction from the Laslett formula for the corresponding beam current
(“nominal” refers to the tune prediction for the zero current case).

Since the Laslett formula predicts tune shifts for particles at the core of a
stationary beam its prediction is an upper limit of what we observe in the
self-consistent particle simulation. Particles away from the center of the dis-
tribution experience smaller space-charge forces.

As a second example, we study the formation of halo in the case of mismatched
beam. In Figure 11 we plot the kurtosis 2

k ≡

〈

(x− 〈x〉)4
〉

〈

(x− 〈x〉)2
〉2 − 3 (22)

2 There are multiple possible definitions of kurtosis. Abramowitz and Stegun [21]
refer to k defined above as the “kurtosis excess.”

20

 6.25

 6.3

 6.35

 6.4

 6.45

 6.5

 6.55

 6.6

 6.65

 6.7

 6.75

 6.5 6.6 6.7 6.8 6.9 7

ve
rt

ic
al

 tu
ne

horizontal tune

I = 0.840 A

I = 0.420 A

I = 0.210 A
I = 0.105 A

nominal

Fig. 10. Transverse tune spread calculated by Synergia, compared to the Laslett
tune shift formula. The green circles correspond to a current of 0.105 Amps, the
blue square symbols to 0.210 Amps, the black stars to 0.420 Amps and the red x’s
to 0.840 Amps. The definition of the ellipses is given in the text. The arrows point
to the tune predicted by the Laslett formula for each current.

of the beam distribution in each transverse plane as a function of s. The beam
parameters are as described above, with a beam current of 0.420 Amps. We
ran four different cases, varying the initial beam conditions: matched beam
with and without momentum spread for single-turn injection, and 20% mis-
matched beam with momentum spread (∆p/p = 0.0003) for single- and multi-
turn injection. For these simulations the lattice does not include any non-linear
elements, but since we use second order transfer maps we expect chromatic
effects to contribute to halo creation for non-zero momentum spread. In the
cases with mismatch, the beam has been mismatched in both planes by stretch-
ing the width by a factor of µ = 1.2 and adjusting the conjugate momentum
distribution to maintain the original emittance.

We observe that in the matched beam cases, the kurtosis is close to zero and
that non-zero momentum spread has a small effect in the horizontal and no
effect in the vertical plane. The reason for the small difference in the horizontal
is due to our matching procedure: we first match the beam correlations for the
presence of dispersion, and then we match for the presence of space charge,
neglecting any interaction between the two effects. This results in a small
residual mismatch in the horizontal (non-zero dispersion) plane. Note that
a Gaussian distribution has k = 0. A distribution with k > 0 is known as
leptokurtic, while a distribution with k < 0 is known as platykurtic. In the case
of the mismatched beam, the simulation quickly converges to a leptokurtic

21

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10000 20000 30000 40000 50000 60000

ho
riz

on
ta

l k
ur

to
si

s

s [m]

 0.420 Amps, 1.2 mismatch, 11 turns injection, ∆p/p = 0.0003
 0.420 Amps, matched, 1 turn injection, ∆p/p = 0.0003

 0.420 Amps, matched, 1 turn injection, ∆p/p = 0
 0.420 Amps, 1.2 mismatch, 1 turn injection, ∆p/p = 0.0003

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10000 20000 30000 40000 50000 60000

ve
rt

ic
al

 k
ur

to
si

s

s [m]

 0.420 Amps, 1.2 mismatch, 1 turn injection, ∆p/p = 0.0003
 0.420 Amps, matched, 1 turn injection, ∆p/p = 0

 0.420 Amps, matched, 1 turn injection, ∆p/p = 0.0003
 0.420 Amps, 1.2 mismatch, 11 turns injection, ∆p/p = 0.0003

(a) (b)

Fig. 11. Kurtosis in the horizontal (a) and vertical (b) planes, as a function of s.
The beam current is 0.420 Amps, and the beam is matched with ∆p/p = 0 (red),
matched with ∆p/p = 0.0003 (green), and mismatched with a 20% mismatch in
both the horizontal and vertical widths, ∆p/p = 0.0003, and for single turn (blue)
and 11 turn (purple) injection.

distribution, an indication of the halo formation. The multi-turn injection
case shows a smaller increase in kurtosis than the single-turn case since the
space-charge effects turn on gradually, resulting in a painting effect. We note
that the authors of Ref. [22] use the same method to identify halo formation,
except that they define a new parameter h, the “spatial-profile parameter.”
The spatial-profile parameter is related to kurtosis by h = k + 1.

In order to present a qualitative measure of the amount of halo created in
the above simulations, we plot two dimensional phase space projections of the
mismatched beam in both the transverse and longitudinal planes. Note that for
the transverse phase space plots we use normalized coordinates, where x and
y are scaled by l = c/w, with c the speed of light and w the angular frequency,
and x′ and y′ are scaled by mc, where m is the proton mass. Figures 12
and 13 show the evolution of the horizontal and vertical phase spaces, while
Figure 14 shows the evolution of a slice of the longitudinal phase space. The
transverse phase space plots give a qualitative picture of halo formation. The
longitudinal phase space plots show the transition from the bunched injected
beam through debunching to a DC beam. The simulated injected beam models
a realistic Booster beam at injection which is bunched according to the 200
MHz Linac rf. The phase space slice in Figure 14 corresponds to a full period
of the 200 MHz rf.

Finally, we investigate how space-charge and chromatic effects affect the emit-
tance of the Booster. In Figure 15 we plot the normalized 4-D transverse
emittance 3 for five different initial beam conditions, described in the caption

3 The 4-D emittance is the square root of the determinant of the covariance matrix
of the transverse phase space.

22

 0
 20
 40
 60
 80
 100

x/(c/ω) [unitless]

x’
 [r

ad
ia

ns
]

-0.2 -0.1 0 0.1 0.2

-0.002

-0.001

 0

 0.001

 0.002

 0
 20
 40
 60
 80
 100

x/(c/ω) [unitless]

x’
 [r

ad
ia

ns
]

-0.2 -0.1 0 0.1 0.2

-0.002

-0.001

 0

 0.001

 0.002

(a) (b)

Fig. 12. Horizontal (x vs. x′) phase-space plot for the mismatched beam case. (a)
Beam in the beginning of the simulation, (b) after 100 turns.

 0
 20
 40
 60
 80
 100

y/(c/ω) [unitless]

y’
 [r

ad
ia

ns
]

-0.4 -0.2 0 0.2 0.4

-0.004

-0.002

 0

 0.002

 0.004

 0
 20
 40
 60
 80
 100

y/(c/ω) [unitless]

y’
 [r

ad
ia

ns
]

-0.4 -0.2 0 0.2 0.4

-0.004

-0.002

 0

 0.002

 0.004

(a) (b)

Fig. 13. Vertical (y vs. y′) phase-space plot for the mismatched beam case. (a) Beam
in the beginning of the simulation, (b) after 100 turns.

 60
 40
 20
 0

phase [radians]

-∆
γ/

10
-3

-ππ/20-π/2-π

-1
-0.5

 0
 0.5

 1 60
 40
 20
 0

phase [radians]

-∆
γ/

10
-3

-ππ/20-π/2-π

-1
-0.5

 0
 0.5

 1 60
 40
 20
 0

phase [radians]

-∆
γ/

10
-3

-ππ/20-π/2-π

-1
-0.5

 0
 0.5

 1

(a) (b) (c)

Fig. 14. Longitudinal (phase vs. −∆γ) phase-space plot for the mismatched beam
case. (a) Beam in the beginning of the simulation, (b) after 3 turns, and (c) after
100 turns.

of the figure. As expected, in the cases where the beam was matched there is
no emittance growth. That is the case for both zero and non-zero momentum
spread, and for space charge. (Our matching procedure takes into account
space-charge effects on the second moments of the beam). In the mismatched

23

9.20×10-12

9.40×10-12

9.60×10-12

9.80×10-12

1.00×10-11

1.02×10-11

1.04×10-11

1.06×10-11

 0 10000 20000 30000 40000 50000 60000

tr
an

sv
er

se
 e

m
itt

an
ce

 [m
2 r

ad
2]

 s [m]

0 Amps, matched beam, 11 turn injection, ∆p/p = 0.0003
0 Amps, matched beam, 11 turn injection, ∆p/p = 0.0

0.42 Amps, 20% mismatch, 11 turn injection, ∆p/p = 0.0003
0.042*11 Amps, matched beam, ∆p/p = 0.0003

0.42 Amps, 20% mismatch, 1 turn injection, ∆p/p = 0.0003

Fig. 15. Normalized 4-D transverse emittance in m2 rad2 for different initial condi-
tions. The red and green curves correspond to a matched beam, with space-charge
effects turned off (0 Amps) with and without a momentum spread of 0.0003, respec-
tively. The purple and light blue curves correspond to a beam of 0.420 Amps total
current and momentum spread of 0.0003, matched and mismatched respectively.
Multi-turn injection of 11 turns is used in all of the above cases. The dark blue
curve corresponds to a single turn injection simulation of a 0.420 Amp mismatched
beam with 0.0003 momentum spread.

cases we observe a 12% increase of the beam emittance during the first 10 to
15 turns after injection. The effect is a combination of chromatic and space-
charge effects and it is very similar for both the single- and multi-turn injection
cases. The total current is the same, 0.420 Amps, in both cases. The emittance
growth can be related to the conversion of beam free energy from mismatch
oscillations into thermal energy of the beam, due to the effect of the non-linear
space-charge forces [31]. We compare our result with the prediction of the free-
energy model for the breathing mode case. In our case, where the space-charge
tune shift divided by the tune is small (∆ν

ν
= −1.15%), the free-energy model

prediction for emittance growth can be approximated by

εTf
εTi

= 1 + 4
[

(µ− 1)2 − (µ− 1)3
]

+O((µ− 1)4), (23)

where µ is the mismatch parameter, and εTf,i are the final (f) and initial (i) 4-D
transverse emittances. With a mismatch parameter of 1.2, as in the case of our
simulation, the model predicts a 4-D transverse emittance growth εTf /ε

T
i = 1.13

to be compared with the 1.12 we obtained from the simulation.

24

6 Conclusions

In this paper we presented Synergia, a package for simulation of linear and
circular accelerators with self-consistent treatment of space charge and the
ability to use arbitrary order transfer maps for modeling single-particle op-
tics. Synergia provides the tools necessary for non-expert users to easily port
and use the package. The user interface takes advantage of the flexibility of
Python to provide a complete and highly configurable system. The parallel
implementation allows us to perform large scale simulations on modern super-
computers and clusters. We have verified the accuracy of our implementation
by comparing Synergia to semi-analytic results and other codes.

In our initial application of Synergia, we studied beam behavior during the
first hundred turns after injection in the Fermilab Booster. We calculated the
particle tune spread and found that the majority of the particles experience a
tune shift much smaller than that predicted by the Laslett formula. We also
studied some mechanisms of beam halo creation and emittance growth. We
used the kurtosis of the beam distribution as a quantitative measure of halo
production. We found that if the injected beam is matched including space-
charge effects there is no apparent emittance growth or halo creation. In the
case of a mismatched beam, we found that both chromatic and space-charge
effects are important in creating halo and emittance growth. A more detailed
study of such effects and their dependence on initial conditions will follow in
a future paper.

7 Acknowledgments

The authors would like to thank Dr. Leo Michelotti for providing the mxyzptlk/beamline
libraries and for many useful discussions regarding single particle optics. For
our research we used resources of the Fermilab Lattice QCD group, operated
by the Fermilab Computing Division as well as resources of the National En-
ergy Research Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy. This work was performed under
the auspices of a Scientific Discovery through Advanced Computing project,
“Advanced Computing for 21st Century Accelerator Science and Technology”,
which is supported by the US DOE/SC Office of High Energy Physics and the
Office of Advanced Scientific Computing Research.

25

References

[1] F. Jones, G. H. Mackenzie, and H. Schonauer, Particle Accelerators,vol. 31, 199
(1990).

[2] S. Machida, in Computational Accelerator Physics, edited by R. Ryne, AIP
Conf. Proc. No. 297 (AIP, New York, 1994), 459.

[3] J. Galambos, J. Holmes, D. Olsen, A. Luccio, and J. Beebe-Wang, ORBIT
User’s Manual, Oak Ridge National Laboratory, SNS/ORNL/AP Technical
Note No. 011, 1999.

[4] http://cepa.fnal.gov/psm/aas/Advanced Accelerator Simulation.html

[5] N. Malitsky, R. Talman, in AIP Conf.Proc. No 391 (AIP, New York, 1997), 337.

[6] http://www.python.org

[7] Booster Staff 1973 Booster Synchrotron ed E L Hubbard Fermi National

Accelerator Laboratory Technical Memo TM-405

[8] I. Hofmann, et al., to appear in the proceedings

of the PAC05 Particle Accelerator Conference, Knoxville, TN, May 16-20, 2005.

http://www-wnt.gsi.de/ihofmann/Developer/Benchmarking/Montague.htm

[9] http://scidac.nersc.gov/accelerator/mli/manual.pdf

[10] J. Qiang, R. D. Ryne, S. Habib and V. Decyk, J. Comp. Phys. 163, 434 (2000).

[11] L. Michelotti, FERMILAB-CONF-91-159 Presented at 14th IEEE Particle

Accelerator Conf., San Francisco, CA, May 6-9, 1991.

L. Michelotti, FERMILAB-FN-535-REV.

L. Michelotti. Published in Conference Proceedings: Automatic Differentiation
of Algorithms: Theory, Implementation, and Application. Society for Industrial
and Applied Mathematics. First International Workshop on Computational
Differentiation. 1991.

L. Michelotti. Published in Conference Proceedings: Advanced Beam Dynamics

Workshop on Effects of Errors in Accelerators, their Diagnosis and Correction.

Corpus Christi, Texas. October 3-8, 1991. American Institute of Physics:
Proceedings No.255. 1992.

[12] H. Yoshida, Phys. Lett. A 150, 262 (1990)

[13] A. Dragt, AIP Proc. 87, Phys. High Energy Accel., Fermilab, 1981, p. 147.

[14] F.Christoph Iselin, “The MAD program(Methodical Accelerator Design)
Version 8.13/8”, Physical Methods Manual, CERN/SL/92, 1992.

[15] GNU Autoconf, Automake and Libtool by G. Vaughan, B. Elliston, T. Tromey
and I. Taylor, Pearson Education 2000.

26

[16] The Hierarchical Data Format, http://hdf.ncsa.uiuc.edu/

[17] http://www.opendx.org

[18] C. Ankenbrandtet al 1980 Proceedings of the 11th International Conference on
High-Energy Accelerators p 260

[19] Popovic P and Ankenbrandt C 1998Workshop on Space Charge Physics in High

intensity Hadron Rings ed A U Luccio and W T Weng (Woodbury, New York:
AIP Conference Proceedings) p 128

[20] Laslett L.J. 1963 Proceedings of the 1963 Summer Study of Storage Rings,

Accelerators and Experimentation at Super-High Energies p. 324

[21] Handbook of Mathematical Functions With Formulas, Graphs, and

Mathematical Tables ed M Abramowitz and I A Stegun, National Bureau of
Standards Applied Mathematics Series - 55

[22] T.P. Wangler and K.R. Crandall 2000 Proceedings of the XX International Linac

Conference ed A.W. Chao, SLAC Report No. SLAC-R-561, eConf:C000821.

[23] http://lqcd.fnal.gov/

[24] Linux cluster in the beams theory department at Fermilab.

[25] http://www.nersc.gov/alvarez/

[26] http://hpcf.nersc.gov/computers/SP/

[27] 700 MHz Pentium III cluster with Myrinet networking.

[28] Physics of Collective Beam Instabilities in High Energy Accelerators, AW Chao,
John Wiley & Sons, Inc, 1993; F. Sacherer, IEEE Trans. Nucl. Sci. NS-18, 1105
(1971).

[29] R.Ryne 1995, Los Alamos National Laboratory Report No. LA-UR-95-391, e-
Print Archive: acc-phys/9502001

[30] J. Buon, ”Beam phase space and emittance”, CERN Accelerator School - Fifth

General Accelerator Physics Course, ed S Turner, Vol I, p. 89, CERN 94 - 01,
Geneva 1994.

[31] M. Reiser, Theory and Design of Charged Particle Beams Weiley, N.Y. 1994,
pp. 470-473; M. Reiser J. Appl. Phys. 70, 1919, 1991.

27

